當(dāng)前位置: 首頁 > 國家公務(wù)員 > 國家公務(wù)員每日一練 > 2021年國考每日一練數(shù)量關(guān)系(7月31日)

2021年國考每日一練數(shù)量關(guān)系(7月31日)

更新時間:2020-07-31 15:10:08 來源:網(wǎng)絡(luò) 瀏覽76收藏15

國家公務(wù)員報名、考試、查分時間 免費(fèi)短信提醒

地區(qū)

獲取驗(yàn)證 立即預(yù)約

請?zhí)顚憟D片驗(yàn)證碼后獲取短信驗(yàn)證碼

看不清楚,換張圖片

免費(fèi)獲取短信驗(yàn)證碼

摘要 國家公務(wù)員考試競爭是十分激烈的。考試范圍很廣,一般包括政治、法律、經(jīng)濟(jì)、人文、地理、科技、生活等方面,所以需要考生進(jìn)行大量的復(fù)習(xí)去理解、掌握、鞏固各類密切相關(guān)的知識,積極備考。以下內(nèi)容為2021年國考每日一練數(shù)量關(guān)系(7月31日)。希望對大家有所幫助。

2021年國考每日一練數(shù)量關(guān)系練習(xí):

1、某款服裝降價促銷后,每天銷量翻倍,獲得的總利潤增加50%,問每套服裝降價的金額為:

A、銷售的1/4

B、銷售價的1/8

C、利潤額的1/2

D、利潤的1/4

2、甲、乙、丙、丁四個工廠共有100名高級技工。其中甲乙兩個工廠的高級技工數(shù)量比為12:25,丙工廠的高級技工人數(shù)比丁工廠少4人,問丁工廠的高級技工人數(shù)比甲工廠:

A、多6人

B、少6人

C、多9人

D、少9人

3、某公司有38名男員工,27名女員工?,F(xiàn)要參加集團(tuán)組織的羽毛球比賽,如采取自由報名的形式,至少有多少名員工報名才能保證一定能從報名者中選出男女選手各8名參賽?

A、65

B、46

C、35

D、16

4、王大媽在市場承包了一個攤位賣水果,一天收攤后清點(diǎn)錢數(shù)時,王大媽發(fā)現(xiàn)手上有100元、50元和10元的鈔票共48張,合計1760元,其中50元比10元多兩張,問100元有多少張?

A、8

B、6

C、4

D、2

5、將白 、藍(lán)、紅三種顏色的背包裝到紙箱里,每個紙箱里放5個背包,顏色任意,質(zhì)監(jiān)部門需要對產(chǎn)品進(jìn)行拆箱檢查,問至少選多少個紙箱,才能保證一定有兩個紙箱里三種顏色的背包數(shù)量都一致?

A、20

B、19

C、22

D、21

下面為2021年國考每日一練數(shù)量關(guān)系參考答案:

1、D

第一步:分析問題

本題為經(jīng)濟(jì)利潤問題,未給出具體數(shù)值,故可采用賦值法。由于總利潤=單件利潤×銷量,題干給出后來總利潤與原總利潤的關(guān)系,故可根據(jù)總利潤之間的關(guān)系及銷量間的關(guān)系,找出單件利潤之間的關(guān)系,求出找出每套服裝降價的金額。

第二步:計算過程

由于每天銷量翻倍,故可將原來每天的銷量賦值為1,則降價促銷后每天的銷量為2;

由于獲得的總利潤增長50%,故將原來每天的總利潤賦值為2,則降價促銷后每天的總利潤為2×(1+50%)=3。

則原來的單件利潤為:2/1=2,降價促銷后的單件利潤為:3/2=1.5。由于每套服裝成本不變,單件利潤減少了:2-1.5=0.5,即降價的金額為0.5。由于原單件利潤為2,0.5/2=1/4,可知每套服裝降價的金額為利潤的1/4。

第三步:再次標(biāo)注答案

故正確答案為D。

2、D

第一步:分析問題

題干中給出甲、乙兩工廠人數(shù)的比例關(guān)系,故可得出甲、乙兩廠人數(shù)之和滿足的倍數(shù)關(guān)系,結(jié)合丙與丁兩廠的人數(shù)及四個工廠的總?cè)藬?shù),根據(jù)奇偶特性,找出甲、乙兩廠的總?cè)藬?shù),進(jìn)而求出各廠的人數(shù)即可。

第二步:計算過程

根據(jù)“甲乙兩個工廠的高級技工數(shù)量比為12:25”,可知甲廠人數(shù)為12的倍數(shù),乙廠人數(shù)為25的倍數(shù),甲乙兩工廠人數(shù)為12+25=37的倍數(shù);由于四個工廠共100人,故100以內(nèi)又是37的倍數(shù)的只有37、74。

根據(jù)“丙工廠的高級技工人數(shù)比丁工廠少4人”,可知:丁-丙=4,二者之差為偶數(shù),故丁與丙之和也為偶數(shù),由于四廠總?cè)藬?shù)為100是偶數(shù),因此甲、乙兩廠的總?cè)藬?shù)也為偶數(shù),故甲、乙兩廠人數(shù)之和只能為74,進(jìn)而可得甲廠的人數(shù)為24人、乙廠的人數(shù)為50人。丁、丙兩廠之和為:100-74=26。

結(jié)合:丁-丙=4,丁+丙=26,解得丁=15,丙=11。

由于24-15=9,可知丁工廠的高級技工人數(shù)比甲工廠少9人。

第三步:再次標(biāo)注答案

故正確答案為D。

3、B

第一步:分析問題

本題中出現(xiàn)“至少……保證……”,故為最值問題中的最不利構(gòu)造問題,解題思路為:最不利+1。

第二步:計算過程

要保證一定能從報名者中選出男女選手各8名參賽,則最不利的情況為某一性別的人數(shù)全部都報名了,另一性別只選出來的7人。由于男員工38人>女員工27人,故最不利的情況即為男員工的全部都報名,而女員工只報名了7人。因此要保證一定能從報名者中選出男女選手各8名參賽,至少有38+7+1=46名員工報名。

第三步:再次標(biāo)注答案

故正確答案為B。

4、C

第一步:分析問題

本題給出各面額的總張數(shù)及合計錢數(shù),且給出50元比10元面額多兩張,故可將10元面額的鈔票設(shè)為x張,則50元面額的鈔票為x+2張,將100元面額的鈔票設(shè)為y張,再根據(jù)總張數(shù)及合計錢數(shù)列方程、解方程即可。

第二步:計算過程

根據(jù)“100元、50元和10元的鈔票共48張”,可知:y+(x+2)+x=48,化簡得:y+2x=46,記為①;

由于合計1760元,可知:100y+50(x+2)+10x=1760,化簡得:5y+3x=83,記為②;

聯(lián)立兩個方程,解得:x=21,y=4。即100元的鈔票有4張。

第三步:再次標(biāo)注答案

故正確答案為C。

5、C

以上內(nèi)容是2021年國考每日一練數(shù)量關(guān)系(7月31日)。希望對考生有所幫助。有意愿報考國家公務(wù)員考試的考生要抓緊時間復(fù)習(xí)備考。2021國家公務(wù)員考試公告暫未公布,為了避免錯過報名,考生可以 免費(fèi)預(yù)約短信提醒,及時獲取報名時間。還可以點(diǎn)擊下方免費(fèi)下載更多考試資料哦!

分享到: 編輯:劉茹

資料下載 精選課程 老師直播 真題練習(xí)

國家公務(wù)員資格查詢

國家公務(wù)員歷年真題下載 更多

國家公務(wù)員每日一練 打卡日歷

0
累計打卡
0
打卡人數(shù)
去打卡

預(yù)計用時3分鐘

環(huán)球網(wǎng)校移動課堂APP 直播、聽課。職達(dá)未來!

安卓版

下載

iPhone版

下載

返回頂部